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Abstract Coastal salt marshes play an important role in mitigating global warming by removing
atmospheric carbon at a high rate. We investigated the environmental controls and emergent scaling of
major greenhouse gas (GHG) fluxes such as carbon dioxide (CO2) and methane (CH4) in coastal salt marshes
by conducting data analytics and empirical modeling. The underlying hypothesis is that the salt marsh GHG
fluxes follow emergent scaling relationships with their environmental drivers, leading to parsimonious
predictive models. CO2 and CH4 fluxes, photosynthetically active radiation (PAR), air and soil temperatures,
well water level, soil moisture, and porewater pH and salinity were measured during May–October 2013
from four marshes in Waquoit Bay and adjacent estuaries, MA, USA. The salt marshes exhibited high CO2

uptake and low CH4 emission, which did not significantly vary with the nitrogen loading gradient
(5–126 kg · ha�1 · year�1) among the salt marshes. Soil temperature was the strongest driver of both fluxes,
representing 2 and 4–5 times higher influence than PAR and salinity, respectively. Well water level, soil
moisture, and pH did not have a predictive control on the GHG fluxes, although both fluxes were significantly
higher during high tides than low tides. The results were leveraged to develop emergent power law-based
parsimonious scaling models to accurately predict the salt marsh GHG fluxes from PAR, soil temperature,
and salinity (Nash-Sutcliffe Efficiency = 0.80–0.91). The scaling models are available as a user-friendly Excel
spreadsheet named Coastal Wetland GHG Model to explore scenarios of GHG fluxes in tidal marshes under a
changing climate and environment.

1. Introduction

Coastal salt marsh sediments demonstrate high carbon sequestration rates and contribute to the mitigation
of climate change by removing atmospheric carbon (Bridgham et al., 2006; Mcleod et al., 2011; National
Research Council, 2015). Carbon storage in marine wetlands is often referred to as blue carbon, which is an
emerging concept for coastal management, protection, and restoration (Crooks et al., 2010; Macreadie
et al., 2017; Morris et al., 2012; Nellemann & Corcoran, 2009). However, there is a knowledge gap regarding
the relative controls of various environmental drivers (e.g., solar radiation, temperature, water level, soil
moisture, salinity, and pH) on the major greenhouse gas (GHG) fluxes such as carbon dioxide (CO2) and
methane (CH4) in coastal wetlands (Mcleod et al., 2011). A pivotal question is whether the salt marsh GHG
fluxes (referred to as CO2 and CH4 fluxes in this paper) follow any emergent scaling relationships with their
environmental drivers, leading to parsimonious (involving aminimum number of parameters) and potentially
generalizable models across time and space. Inadequate understanding of the dominant environmental con-
trols and scaling hinders the development of low dimensional models and engineering tools to predict the
GHG fluxes and potential carbon storage. The lack of predictive models and tools hampers the development
of GHG offset protocols to derive scientific guidelines for restoration, monitoring, and maintenance of tidal
wetlands under a changing climate and environment.

The net ecosystem exchange (NEE) of CO2 represents the balance between instantaneous photosynthesis
and autotrophic as well as heterotrophic respiration. Wetlands are typically CO2 sinks during the day, since
photosynthetic uptake is greater than respiration, and CO2 sources at night due to respiration in the absence
of photosynthesis (Juszczak et al., 2012). Soil temperature (ST) is the most important predictor of nighttime
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net ecosystem respiration for different ecosystems, including wetlands (Lloyd & Taylor, 1994; Mahecha et al.,
2010; Tong et al., 2014; Xie et al., 2014). However, subject to the availability of nutrients, the daytime CO2

uptake by wetland plants is mainly driven by photosynthetically active radiation (PAR) and temperature
(Moseman-Valtierra et al., 2016). Further, the tidal cycle may contribute to the reduction of CO2 uptake by
increasing soil salinity. High salinity substantially inhibits the salt marsh photosynthesis and productivity by
impacting both stomatal and mesophyll conductance (Callaway et al., 2007; Parida & Das, 2005; Pearcy &
Ustin, 1984). In general, salinity is higher at the high marsh zone compared to low marsh areas because
the weaker tidal flushing at higher elevations cannot remove the accumulated salt from the soil (Callaway
et al., 2007).

Wetland CH4 fluxes are produced through soil microbial processes and mediated by plant physiology (active
or passive transfer of gases from soils to atmosphere) under the influence of hydroclimatic and physicochem-
ical factors (Smith et al., 2003). Conrad (1989) described wetland CH4 emissions to the atmosphere as an
outcome of the following soil biogeochemical and ecological processes: (i) CH4 production by methanogenic
bacteria under anaerobic conditions; (ii) CH4 oxidation by methanotrophic bacteria mainly under aerobic
conditions; and (iii) CH4 transport to the atmosphere. Much research (e.g., Nahlik & Mitsch, 2011; Turetsky
et al., 2014; Whalen, 2005) has reported a positive correlation of CH4 emissions with ST and water level for
freshwater wetlands. Bartlett et al. (1987) and Poffenbarger et al. (2011) reported a strong negative correla-
tion between CH4 emissions and soil salinity over a gradient from freshwater to polyhaline (e.g., >18 ppt)
tidal marshes.

Several process models are available to predict CO2 and/or CH4 fluxes mainly from freshwater wetlands (e.g.,
Cao et al., 1996; Potter, 1997; van Huissteden et al., 2006; Walter & Heimann, 2000; Zhang et al., 2002). Recent
process models of freshwater wetland carbon dynamics include McGill (St-Hilaire et al., 2010), peatland
DOS-TEM (Fan et al., 2013), WetQual-C (Sharifi et al., 2013), and CoupModel (Jansson, 2012). Process-based
freshwater GHG flux models are typically detailed, often over-parameterized, and require data for many input
variables—providing predictions with an inherent high uncertainty (e.g., Melton et al., 2013; Zhang et al.,
2002). Further, it remains unclear whether the freshwater models can be directly adapted for coastal salt
marshes. The complexity and domain expertise requirement of the process models also hamper their wide-
spread usage as ecological engineering tools for coastal restoration and management.

In contrast, relatively simple and parsimonious empirical models of GHG fluxes can be built by leveraging
the understanding of the relative environmental controls and the dominant drivers of the fluxes. Previous
research presented regression-based empirical models mainly to explain the correlations of GHG fluxes
with soil, climate, and hydrologic variables (e.g., Frolking & Crill, 1994; Roulet et al., 1992; Schedlbauer
et al., 2012; Yurova et al., 2007; Yvon-Durocher et al., 2014). Estimated parameters of these empirical mod-
els were tailored to be site- and/or time-specific, hindering their transferability across climatic and biogeo-
chemical gradients. Further, these empirical models were mostly developed for freshwater (tidal and
nontidal) wetlands. Since salinity significantly influences the CO2 uptake of wetland plants, as well as soil
biogeochemistry and CH4 fluxes, the freshwater models cannot be directly applied as predictive tools for
coastal salt marshes.

Scaling provides critical insights into the structural and functional relationships of environmental processes
with the major drivers by facilitating information transfer across different temporal and spatial domains
(Blöschl & Sivapalan, 1995; Sposito, 2008). Successful scaling can, therefore, lead to the development of gen-
eralized (scale invariant) predictive models for an environmental system (Ishtiaq & Abdul-Aziz, 2017). The
concept of similarity-based emergent scaling has been explored for robust predictions in various biological
and environmental sciences (e.g., Enquist et al., 2003; Hondzo et al., 2013; Schwefel et al., 2017; Warnaars
et al., 2007). A well-known example of emergent scaling in biology is the power law (f(x) = axb; a = constant,
b = exponent) based “Kleiber’s law,” which states that a plant’s metabolic rate increases with the body mass
with an exponent of 0.75 (Savage et al., 2004). Power law relationships can represent a unique “scale invar-
iance” or “scale-free” attribute; that is, the functional relations do not change when the magnitude (scale)
of the driving variable is altered (Farrior et al., 2016; Guan et al., 2016; Serran et al., 2018; Serran & Creed,
2016). Enquist et al. (2003) leveraged Kleiber’s law to develop a generalized empirical model of nightly
respiration fluxes as a function of inverse temperature for various terrestrial ecosystems across the United
States and Europe.
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The main objective of this paper is to determine the environmental controls and emergent scaling of the
major GHG fluxes of CO2 and CH4 in coastal salt marshes. The underlying hypothesis is that the salt marsh
GHG fluxes represent emergent scaling relationships with their environmental drivers, leading to parsimo-
nious predictive models. The research was conducted by collecting field data from four salt marshes on
southern Cape Cod (Waquoit Bay and adjacent estuaries), MA, incorporating a range of nutrient loading con-
ditions. The relative controls of various environmental drivers on the salt marsh GHG fluxes are first investi-
gated and estimated by employing a systematic data analytics methodology (Ishtiaq & Abdul-Aziz, 2015).
Dominant drivers of the fluxes are identified by resolving their mutual correlations in the multivariate space
alongside process understanding. Data for the dominant drivers are then leveraged to develop simple,
parsimonious, and emergent power law-based scaling models to predict the salt marsh GHG fluxes from a
small set of dominant environmental drivers. The empirical scaling models are represented in a user-friendly
Excel spreadsheet named “Coastal Wetland GHGModel” (CWGM) as an ecological engineering tool to explore
scenarios of GHG fluxes in tidal marshes under a changing climate and environment.

2. Materials and Methods
2.1. Study Area

The study area represents the coastal salt marshes located on the shore of the North Atlantic Ocean at Cape
Cod, Massachusetts. The marsh system includes several subembayments, incorporating a range of human
population density and a large gradient (up to 50-fold difference) of nitrogen (N) load per unit area of estuary
(Kroeger et al., 2006; Valiela et al., 2000). Four salt marshes representing a range of nutrient loading were
selected for the study (Figure 1): (i) Sage Lot Pond (SL), (ii) Eel Pond (EP), (iii) Great Pond (GP), and (iv)
Hamblin Pond (HP). All the study sites except for Great Pond are located inside Waquoit Bay (MA), which
encompasses approximately 121.5 ha of public and privately owned salt marshes (Waquoit Bay National
Estuarine Research Reserve, 2014). SL represents relatively low N loading conditions (~5 kg · ha�1 · year�1);
HP represents low to medium N loading (~29 kg · ha�1 · year�1), whereas EP (~63 kg · ha�1 · year�1) and GP
(~126 kg · ha�1 · year�1) represent medium to high N loading. The N loading rates reflected existing esti-
mates, which were obtained by extensive sampling and measurement of total dissolved N concentrations
in groundwater, as well as by load calculations based on annual water budgets for each watershed and appli-
cation of a land use-based nitrogen loading model (Cole et al., 2005; Valiela et al., 2000).

The four wetlands are characterized by moderate to high salinity (mesohaline to polyhaline), tidal flooding,
and native Spartina alterniflora (C4 plant)-dominated vegetation community in the low marsh zone. Based
on tide data at the nearby Woods Hole, MA station (ID: 8447930; National Oceanic and Atmospheric
Administration [NOAA], 2017), the study region is subject to semidiurnal tides, representing a mean sea level
(MSL) of�3.3 cm during 2013 and�5.9 cm during 1996–2013, relative to NAVD 88. Themean tidal range was
54.9 cm during 2013 and 54.3 cm during 1996–2013, indicating a microtidal (<200 cm) regime (Davies, 1964).
The MSL increased since 1930 at an estimated linear rate of 0.28 cm/year.

2.2. Data Collections and Processing

The NEE of CO2 and CH4, as well as the environmental variables (PAR, air and soil temperatures, water level,
soil moisture, and porewater salinity and pH) were measured for different days during May–October
(extended growing season) of 2013 across the four salt marshes. The variables represent potential drivers
and processes components (e.g., climate, hydrology, and soil biogeochemistry) of the CO2 and CH4 fluxes.
At least three plots were established within 6.5 m2 area in the low marsh at each site (three plots in both
SL and GP and four plots in both HP and EP). Additionally, each of the three plots at the relatively pristine site
(SL) had three subplots (56 cm × 56 cm), which were spaced at least 12 m and no farther than 50 m apart.
Instantaneous measurements of fluxes and environmental variables were made in 20 plots to incorporate
diurnal variability and tidal (low versus high) regimes between 8 a.m. and 8 p.m. Themarshes were inundated
during high tides and remained mostly saturated during low tides.

The NEE of CO2 and CH4 were measured with a cavity ring-down spectrometer gas analyzer (Model
G2301, Picarro, Inc., Santa Clara, CA; frequency: 1 Hz; precision level: 0.4 ppm for CO2 and 3 ppb for CH4).
Tubing connected the cavity ring-down spectrometer analyzer to a transparent, closed acrylic chamber
(60 cm × 60 cm × 60 cm), which was sequentially placed on top of the plots in the marshes. The collars
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were permanently installed in each plot to minimize any disturbance from chamber placement. The
measured CO2 fluxes represented both daytime net uptake (NEECO2,uptake) and evening/nighttime
(henceforth “nighttime”) net respiration (NEECO2,emission). NEECO2,uptake were obtained during 8 a.m. to
4:30 p.m. (Eastern Standard Time, EST), whereas NEECO2,emission were obtained at or after sunset between
4:30 p.m. and 8 p.m. EST (PAR ≤ 1.5 μmol ·m�2 · s�1). However, all measured CH4 fluxes represented net
emissions (NEECH4,emission) from the salt marshes. We used the notation, NEE to refer to the exchanges of
CO2 or CH4 to be consistent among the three instantaneous fluxes. The negative and positive values of
NEE conventionally indicated the net uptake and emission of GHG, respectively.

The molar concentrations of each GHG were calculated with the ideal gas law using the field measured air
temperature (AT) and atmospheric pressure. Chamber artifacts wereminimized by utilizing short deployment
times (5–10 min), and the air inside the chambers was circulated using battery-powered fans. Fluxes were cal-
culated by linearly regressing instantaneous GHG concentrations with time (second, s) and normalizing the
regression slopes (i.e., rate of change in molar concentrations) by the chamber area (60 cm × 60 cm) for each
sampling period (typically ~5 min). AT was therefore excluded from the data sets for further analysis to avoid
spurious correlation with the fluxes. Instead, ST was considered to represent the impact of temperature on
fluxes. ST was measured at a depth of 5 cm using an Onset U23-004 HOBO Pro v2 External Temperature
Data Logger every 10 s for the duration of chamber deployments; the measurements were averaged to
obtain a single value of ST over each sampling period of fluxes.

PAR was measured on-site by using a smart sensor (Onset Computer Corporation, Model # S-LIA-M003) at the
time of flux sampling. Soil moisture content (SM) was measured inside the flux measurement plots with a
Decagon Electrical Conductivity-5 (EC-5) sensor at a depth of 5 cm. The corresponding porewater salinity

Figure 1. Locations of the four salt marshes in the Waquoit Bay and adjacent estuaries, MA. The nitrogen loading rates were approximately 5, 29, 63, and
126 kg · ha�1 · year�1 at the Sage Lot Pond, Hamblin Pond, Eel Pond, and Great Pond sites, respectively.
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(SS) wasmeasured with a handheld refractometer by squeezing drops of water extracted from approximately
5 ml of surface soil. pH was measured with a surface probe pHmeter (Extech Instruments, Nashua, NH). Water
level sensors were placed within a 50-cm tall well at each of the four salt marshes; 40 cm of each well was
driven vertically into the soil and screened with a mesh size of 0.5 mm. Well water level (h), relative to the
base of the well, was recorded using a nonvented automated pressure transducer and was corrected for
barometric pressure post hoc (water level logger: Onset Computer Corporation, Model #U20-001-02-TI;
barometric pressure sensor: Vaisala PTB101B Barometer, WBNERR meteorological station).

The data set was subsampled by excluding the instantaneous data panels that had missing values for one or
multiple environmental variables associated with the GHG fluxes. We then applied a two-step filtering
procedure to ensure the QA/QC of measurements. The first filtering step was based on the coefficient of
determination (R2) of the linear regression used to convert GHG concentration to flux. A threshold R2 of
0.90 and 0.80 were set for NEECO2 and NEECH4, respectively (Moseman-Valtierra et al., 2016). Any flux obser-
vation below the respective threshold was removed from the data matrix along with the corresponding
environmental drivers. The second filtering step included removal of outliers by applying the interquartile
range (IQR) criteria (Tukey, 1977). Observations outside the ranges of Q1 � 1.5*IQR and Q3 + 1.5*IQR
(Q1 = first quartile, Q3 = third quartile, and IQR = Q3 � Q1) for individual variables were removed along with
other co-measured variables.

Analysis of the relative environmental linkages and controls required availability of data for GHG fluxes and
all selected environmental variables. However, all sampling days in May and some sampling days during
June–October did not have measurements for all environmental variables, and were therefore excluded
from the linkage analyses. The two-step filtering led to the exclusion of 19% and 17% of observations from
the primary linkage data sets of NEECO2,uptake and NEECH4,emission, respectively. Combining four marshes, the
final data sets for determining the relative linkages of fluxes with the environmental variables included 73
and 63 observation panels for NEECO2,uptake and NEECH4,emission, respectively (Table 1). The linkage data
set for NEECO2,uptake had multiple observations representing 14 days during June to October: 4 days in
June, 2 days in July, 4 days in August, 2 days in September, and 2 days in October. The linkage data set
for NEECH4,emission had meaningful observations for 12 days: 4 days in June, 1 day in July, 4 days in
August, 1 day in September, and 2 days in October. The filtered flux and environmental variables varied
across the four tidal marshes (Tables S1 and S2 in the supporting information). Subject to the lack of ade-
quate measurements, a detailed investigation into the relative environmental controls of the nighttime
respiration fluxes of CO2 (NEECO2,emission) was not possible. Instead, based on available data and existing lit-
erature (Lloyd & Taylor, 1994; Mahecha et al., 2010; Tong et al., 2014; Xie et al., 2014), ST was considered the
main driver and sole predictor of NEECO2,emission in this research.

Table 1
Summary of the Relative Linkage Data Sets for GHG Fluxes and Environmental Variables During June–October 2013 at Four Salt Marshes in Waquoit Bay and Adjacent
Estuaries, MA

Data set Variables Mean Standard deviation Minimum Maximum

Net uptake fluxes of CO2; sample size, N = 73 NEECO2,uptake (μmol · m�2 · s�1) �7.17 5.03 �0.05 �17.10
PAR (μmol · m�2 · s�1) 1,468.80 527.35 303.70 2,080.37
ST (°C) 19.11 4.56 8.89 26.10
SS (ppt) 29.53 4.00 20.00 36.00
pH 6.80 0.34 6.05 7.87
h (m) 0.46 0.06 0.36 0.64
SM (%) 63.89 3.32 51.20 68.67

Net emission fluxes of CH4; sample size, N = 63 NEECH4,emission (nmol · m�2 · s�1) 1.15 0.72 0.10 2.83
PAR (μmol · m�2 · s�1) 1,342.15 673.55 115.58 2,080.37
ST (°C) 20.25 4.05 8.89 26.35
SS (ppt) 29.10 3.81 20.00 34.00
pH 6.88 0.31 6.30 7.87
h (m) 0.45 0.10 0.13 0.64
SM (%) 63.66 3.58 51.20 68.67

Note. NEECO2,uptake, NEECH4,emission, PAR, ST, SS, pH, h, and SM refer to the daytime net uptake fluxes of CO2, net emission fluxes of CH4, photosynthetically active
radiation, soil temperature, porewater salinity, pH, well water level, and soil moisture content, respectively; ppt refers to parts per thousand. The negative sign
indicates the net uptake fluxes of CO2; h represents the water level relative to the base of wells inserted at 40 cm depth from the ground surface of the marshes.
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The predictive modeling data sets for NEECO2,uptake and NEECH4,emission were prepared once the major drivers
of the individual fluxes were identified by the data analytics approaches (see section 3.6 for details).
Availability of additional data for the reduced set of variables allowed an expansion of the predictive model-
ing data sets over May to October for both NEECO2,uptake and NEECH4,emission. However, the two-step filtering
led to the exclusion of 12% and 25% of observations from the primary modeling data sets of NEECO2,uptake
and NEECH4,emission, respectively. Combining the four marshes, the net CO2 uptake data set included 5 days
in May, 6 days in June, 1 day in July, 4 days in August, 4 days in September, and 5 days in October; the net
CH4 emission data set included the same sampling days with one additional day in May. The predictive
modeling data set for ST versus NEECO2,emission had measurements for 8 days: 2 days in May, 2 days in
June, 1 day in July, 1 day in August, and 2 days in October. The sample size for the predictive modeling data
sets was 137, 22, and 107 for NEECO2,uptake, NEECO2,emission, and NEECH4,emission, respectively (see details in
Table S3 in the supporting information). The final data sets represented a considerable variation in GHG
fluxes across the growing season days and diurnal hours (Figures S1 and S2 in the supporting information).
The SL, HP, GP, and EP sites, respectively, represented 51%, 14%, 19%, and 16% of the CO2 flux data; the cor-
responding site representations of CH4 flux data were 52%, 16%, 12%, and 20%, respectively. We pooled the
full set of data from all four marshes to incorporate a range of nutrient loadings and other environmental dri-
vers, and estimate emergent scaling-based generalized predictive models of GHG fluxes for Waquoit Bay and
adjacent areas.

2.3. Analysis of Variance to Compare the GHG Fluxes Across Four Salt Marshes and Tidal Conditions

One-way analysis of variance (ANOVA) was used to test the null hypothesis that there were no significant
differences in GHG fluxes (NEECO2,uptake and NEECH4,emission) with the nitrogen loading gradient (5–
126 kg N · ha�1 · year�1) among the four salt marshes. One-way ANOVA was also used to examine the effect
of tidal conditions (low versus high tides) on the measured fluxes across the four salt marshes. The ANOVA
analyses were conducted using the predictive modeling data sets (Table S3 in the supporting information)
because of their larger sample sizes than that of the relative linkage data sets. Data were log10 transformed
prior to the analysis to incorporate the inherent nonlinearity and achieve an approximate normal distribution
in the observed GHG fluxes.

2.4. Data Analytics to Determine the Relative Environmental Controls of GHG Fluxes

A systematic data analytics methodology (Ishtiaq & Abdul-Aziz, 2015) was utilized to estimate the relative
environmental controls and dominant drivers of NEECO2,uptake and NEECH4,emission in the coastal marshes.
The analytics involved a sequential application and synthesis of Pearson correlation analysis, principal
component analysis (PCA) and factor analysis (FA) (Jolliffe, 1993), and partial least squares regression
(PLSR) modeling (Wold et al., 2001). Data for all variables were log10 transformed to incorporate any
nonlinear process interactions, and then standardized by calculating their Z-scores (dimensionless) to bring

different variables and units onto a comparable scale as follows: Z ¼ X � X
sX

, where X = log10-transformed

variable, X = average of X, and SX = standard deviation (SD) of X. Absolute values of the negative fluxes
(NEECO2,uptake) were considered for analysis and modeling in the nonlinear (log10) domain.

The correlation analysis provides important background information on the correspondences between the
GHG fluxes and their predictors. However, the correlation coefficients are inherently inconclusive and could
be misleading subject to the impact of multicollinearity (mutual correlations) among the driving variables.
Both PCA and FA resolve multicollinearity by using orthogonal projections to mine the underlying interrela-
tions and linkage patterns among the flux and the driving variables. However, themechanisms of PCA and FA
are different, although none involves a direct estimation of the predictors versus response relationship. In this
study, PCA was conducted by deriving orthogonal (independent) entities called principal components (PCs;
as many as the number of original variables), where each PC was a linear combination of all original (response
and predictor) variables. In contrast, FA was conducted by decomposing all original (response and predictor)
variables into a smaller set of latent entities called factors. The important latent factors were extracted based
on an eigenvalue criterion (eigenvalue ≥ 1.0) for a maximum explanation of data system variance with fewer
factors. Further, the “varimax” rotation was performed to optimize the loadings of the original variables on
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each factor. The synthesis of PCA and FA provided a confirmatory understanding of the interrelation and link-
age patterns among the GHG fluxes and the environmental drivers.

PLSR models were developed to directly estimate the individual controls of the drivers on GHG fluxes. We did
not employ a conventional principal component regression (PCR), because the PCs for a PCR are first com-
puted by decomposing only the predictors (unlike the PCA in this study) and then fitted with the response
in two separate steps, which does not ensure an optimal explanation of variance in the response (Jolliffe,
1993). However, the partial least squares (PLS) components in PLSR are computed and maximally linked with
the response variable by a simultaneous decomposition of the response and all predictors (Schumann et al.,
2013). The PLSR modeling resolves multicollinearity to avoid spurious correlations in the data matrix. This is
achieved by fitting models in the orthogonal domain with a minimum number of PLS components as
predictors (Kuhn & Johnson, 2013; Wold et al., 2001). The most accurate and consistent models of fluxes were
identified based on a synthesis of the minimum Akaike Information Criterion (AIC) (Akaike, 1974) and the
maximum Nash-Sutcliffe Efficiency (NSE; Text S1 in the supporting information). The PLSR model parameters
were robustly estimated using the SIMPLS algorithm (de Jong, 1993) and a 10-fold cross-validation (Kuhn &
Johnson, 2013).

Estimated parameters of the PLSR models were converted back to the Z-score domain of the original vari-
ables to quantify the relative controls (weights, β) of the individual environmental drivers on the GHG fluxes.
The weights of individual drivers were aggregated to compute the strength of linkages between GHG fluxes
and the “climatic” (βC; including PAR and ST), “biogeochemical” (βB; SS and pH), and “hydrologic” (βH; h and
SM) process components using the method of vector summation as follows:

βC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2PAR þ β2ST

q
(1)

βB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2SS þ β2pH

q
(2)

βH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2h þ β2SM

q
(3)

Although the variables within a process component may be interlinked, the aggregated linkages of the com-
ponents are relatively unbiased given that the individual variable weight (β) were estimated with PLSR by
appropriately resolving multicollinearity. The relative linkages of different process components with the
GHG fluxes were compared to the “climatic” component by calculating the ratios of βC/βB and βC/βH.
Results of the four-layer data analytics were synthesized to characterize the relative controls of environmental
drivers on NEECO2,uptake and NEECH4,emission, and identify their dominant predictors.

2.5. Predictive Modeling of GHG Fluxes With Emergent Scaling Functions

Emergent power law scaling-based predictive models of the salt marsh GHG fluxes were developed as a func-
tion of the dominant and mechanistically meaningful predictors using the original data (i.e., without centra-
lization and normalization to Z-scores) as follows:

NEEGHG ¼ 10aXb1
1 Xb2

2 Xb3
3 :…Xbk

k (4)

where NEEGHG = net fluxes of CO2 or CH4 (i.e., NEECO2,uptake, NEECO2,emission, or NEECH4,emission), k = number of
dominant predictors, a and bk = model parameters (i = 1, 2, …, k), and Xk = environmental predictors. The
parameters bk represent the exponents of the emergent power law scaling relationships between a GHG flux
variable and the major environmental predictors. The power law scaling models were built in a parsimonious
way by involving the smallest set of dominant predictors, which had been identified through data analytics
(details in section 3.6). The models were estimated numerically with data using the Levenberg-Marquardt
least squares technique (a variant of Gauss-Newton algorithm; Seber & Wild, 2003, 2005) in MATLAB. The
modeling data sets were replicated 10,000 times (i.e., total number of observations = original sample
size × 10,000) using bootstrap resampling to achieve 10,000 model estimations. A cross-validation algorithm
was also incorporated into the model estimation framework to further a robust estimation of parameters. In
each iteration, 80% of the data were used for model calibration (training) and the remaining 20% were used
for validation (independent testing). The averages of 10,000 estimated values for individual parameters were
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used as the final parameter set to predict GHG fluxes in the tidal salt marshes. The model goodness-of-fit was
measured by NSE, whereas the model accuracy was assessed by the ratio of root-mean-square error to the
standard deviations of the observations (RSR; Text S1 in the supporting information). Similar to R2,
NSE = 1.0 refers to a perfect model (i.e., values closer to 1.0 indicate a better model); NSE < 0 refers to a
model that is a worse predictor than the average of flux observations as an alternative model. In contrast,
an RSR value of less than 0.50 indicates a highly accurate model (see Text S1 for details).

3. Results
3.1. Comparison of the GHG Fluxes Across the Salt Marshes and Tidal Conditions

Based on the one-way ANOVA, we could not reject the null hypothesis of no significant differences in
NEECO2,uptake (F3,133 = 0.46; p value = 0.71) or in NEECH4,emission (F3,103 = 0.98; p value = 0.41) with the
nitrogen loading gradient (5–126 kg · ha�1 · year�1) among the four salt marshes at the 95% level of con-
fidence (Table S4 in the supporting information). However, the null hypothesis of no significant difference
was rejected for both NEECO2,uptake (F1,135 = 11.33; p value < 0.001) and NEECH4,emission (F1,105 = 22.47; p
value < 0.001) at the 95% level of confidence when the respective fluxes were compared between the high
tide and low tide conditions (Table S5 in the supporting information). The higher GHG fluxes corresponded
to the high tides, whereas the GHG fluxes were relatively low during the low tides (Figure S3 in the
supporting information).

3.2. Correlations of the GHG Fluxes and Environmental Variables

The nonlinear correlation coefficients (obtained from the log10-transformed and standardized data) provided
first-order information about the influence of each environmental driver on the GHG fluxes (Table 2).
Significance of the correlations was evaluated at the 95% level of confidence (p value< 0.05). The net uptake
fluxes of CO2 and emission fluxes of CH4 had significant correlations with light (PAR), ST, and SS. NEECO2,uptake
was highly correlated with ST (r = 0.87) and moderately to highly correlated with PAR (r = 0.73). The correla-
tion between NEECO2,uptake and SS was moderately strong (r = �0.55). Similarly, NEECH4,emission had a high
correlation with ST (r = 0.81), a moderate to high correlation with PAR (r = 0.63), and a moderate correlation
with SS (r = �0.38; Table 2). However, well water level (h), soil moisture (SM), and porewater pH were weakly
and insignificantly correlated (p value> 0.05) with both fluxes. Further, significant correlations between PAR

Table 2
Pearson Correlation Matrix for the Net Uptake Fluxes of CO2 and Net Emission Fluxes of CH4 With the Environmental Variables
at Four Salt Marshes in Waquoit Bay and Adjacent Estuaries, MA

Variable PAR ST SS pH h SM NEE

Net uptake fluxes of CO2 (NEECO2,uptake)
PAR 1.00 0.41 �0.38 0.03 �0.23 0.12 0.73
ST 0.41 1.00 �0.39 0.08 0.03 0.05 0.87
SS �0.38 �0.39 1.00 �0.35 �0.08 0.00 �0.55
pH 0.03 0.08 �0.35 1.00 0.30 �0.01 0.09
h �0.23 0.03 �0.08 0.30 1.00 0.11 �0.11
SM 0.12 0.05 0.00 �0.01 0.11 1.00 0.06
NEE 0.73 0.87 �0.55 0.09 �0.11 0.06 1.00

Net emission fluxes of CH4 (NEECH4,emission)
PAR 1.00 0.47 �0.45 0.03 0.09 0.04 0.63
ST 0.47 1.00 �0.21 �0.08 �0.25 0.04 0.81
SS �0.45 �0.21 1.00 �0.29 �0.10 0.01 �0.38
pH 0.03 �0.08 �0.29 1.00 �0.29 �0.01 �0.03
h 0.09 �0.25 �0.10 �0.29 1.00 �0.09 �0.14
SM 0.04 0.04 0.01 �0.01 �0.09 1.00 0.00
NEE 0.63 0.81 �0.38 �0.03 �0.14 0.00 1.00

Note. Bold indicates significant correlations at the 95% level of confidence (p value < 0.05). NEECO2,uptake,
NEECH4,emission, PAR, ST, SS, pH, h, and SM refer to the daytime net uptake fluxes of CO2, net emission fluxes of
CH4, photosynthetically active radiation, soil temperature, porewater salinity, pH, well water level, and soil moisture
content, respectively.
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and ST (r = 0.41 to 0.47), SS and ST (r =�0.21 to�0.39), and SS and pH (r =�0.29 to�0.35) were apparent—
indicating the presence of a considerable multicollinearity among the environmental drivers.

3.3. Relative Orientations and Controls of the Environmental Drivers on GHG Fluxes

The PCA loadings obtained from the first two PCs for NEECO2,uptake and NEECH4,emission were presented
through biplots, where PC1 and PC2 explained 36–39% and 20–22% of the data variance, respectively
(Figure 2). The two fluxes loaded highly on the first PC and relatively weakly on the second PC. The strong
loadings of PAR and ST on PC1, as well as their distinctly non-orthogonal orientations, indicated their high
interrelationships and strong positive controls on the fluxes. Moderate loadings of the SS vector on both
PCs and its direction along PC1 suggested moderate negative linkages of porewater salinity with both fluxes.
In contrast, well water level (h) and pH loaded very weakly on PC1 and strongly on PC2—indicating their
weak controls on both NEECO2,uptake and NEECH4,emission. However, the fluxes had the weakest linkages with
SM, as apparent in its very small loadings on both PCs.

3.4. Dominant Environmental Factors and Drivers of the GHG Fluxes

Three orthogonal latent factors were extracted based on the eigenvalue ≥ 1 criterion for both NEECO2,uptake
and NEECH4,emission (Table 3). The three factors together explained approximately 60% of the respective data

Figure 2. Biplots from principal component analysis, showing the interrelations and relative orientations of environmental
variables with (a) NEECO2,uptake and (b) NEECH4,emission for the four salt marshes in Waquoit Bay and adjacent estuaries,
MA. NEECO2,uptake, NEECH4,emission, PAR, ST, SS, pH, h, and SM refer to the daytime net uptake fluxes of CO2, net emission
fluxes of CH4, photosynthetically active radiation, soil temperature, porewater salinity, pH, well water level, and soil
moisture content, respectively. PC = principal component.

Table 3
Dominant Factors and Optimized Loadings of the Fluxes and the Environmental Variables for the Four Salt Marshes in Waquoit
Bay and Adjacent Estuaries, MA

Net uptake fluxes of CO2 Net emission fluxes of CH4

Variable Factor 1 Factor 2 Factor 3 Variable Factor 1 Factor 2 Factor 3

PAR 0.37 0.78 0.02 PAR 0.49 0.02 0.65
ST 1.00 0.05 0.05 ST 0.93 �0.05 0.02
SS �0.35 �0.36 �0.55 SS �0.24 �0.28 �0.50
pH 0.05 �0.04 0.64 pH �0.03 1.00 0.04
h 0.03 �0.34 0.39 h �0.26 0.26 0.28
SM 0.04 0.04 0.00 SM 0.03 �0.01 �0.02
NEECO2,uptake 0.84 0.52 0.11 NEECH4,emission 0.86 �0.01 0.32

Note. Bold values indicate dominant loadings on each factor. NEECO2,uptake, NEECH4,emission, PAR, ST, SS, pH, h, and SM
refer to the daytime net uptake fluxes of CO2, net emission fluxes of CH4, photosynthetically active radiation, soil
temperature, porewater salinity, pH, well water level, and soil moisture content, respectively.
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variance for the GHG fluxes. Both fluxes had their high loadings (0.84 and
0.86, respectively) on factor 1. The high loadings (0.93 to 1.00) of ST on
factor 1 suggested strong linkages of the fluxes with the ambient ST.
NEECO2,uptake and PAR, respectively, had a moderate (0.52) and a high
(0.78) loading on factor 2, indicating the control of sunlight on the
daytime net CO2 uptake. In contrast, the weak to moderate loading of
NEECH4,emission (0.32) and the moderate to high loading of PAR (0.65) on
factor 3 suggested a moderate linkage of sunlight with the methane emis-
sion fluxes. However, the moderate loading of PAR (0.49) on factor 1—
where both NEECH4,emission and ST loaded highly—indicated the potential
impact of mutual linkage between PAR and temperature on the explana-
tion of variance in the methane fluxes. SS loaded moderately (�0.50 to
�0.55) on factor 3 and weakly to moderately (�0.24 to �0.36) on factors
1 and 2, referring to a noteworthy linkage of soil porewater salinity
with both fluxes. Although pH loaded highly (1.00) on factor 2 for
NEECH4,emission and moderate to highly (0.64) on factor 3 for NEECO2,uptake,
the small loadings of fluxes on the respective factors suggested their weak
linkages with pH (Table 3). The hydrology variables (h and SM) did not have
dominant loadings on any factor—suggesting their weak controls on the
fluxes for these moderate to highly saline coastal marshes (Table 1).

3.5. Estimations of the Environmental Controls of GHG Fluxes
With PLSR

The nonlinear PLSR models (with the Z-score data) directly estimated the
relative controls of the environmental variables on the GHG fluxes. The
cross-validated minimum AIC and maximum NSE criterion led to the
inclusion of 2–3 PLS components to obtain the optimal PLSR models
(Figure 3). The explanatory models of NEECO2,uptake and NEECH4,emission

were statistically significant (F statistic = 47–289, p value < 0.0001),
exhibiting a good fitting efficiency and accuracy (NSE = 0.73–0.94,

RSR = 0.25–0.51; Table 4). ST was the most influential (highest weight) variable in regression—exhibiting
approximately 2, 4–5, 8–16, 12–22, and 15–33 times stronger controls on the fluxes than that of PAR, SS,
h, pH, and SM, respectively (Table 4). Based on the aggregated linkages (equations (1)–(3)), the “climatic”
component (ST and PAR) had approximately 5 and 19 times stronger controls on NEECO2,uptake than that
of the “biogeochemical” (SS and pH) and “hydrologic” (h and SS) components, respectively. Similarly,
NEECH4,emission was 5 and 8 times more strongly linked with the “climatic” component than with the “bio-
geochemical” and “hydrologic” components, respectively.

3.6. Development of Emergent Scaling-Based Predictive Models of GHG Fluxes

The four-layer data analytics provided important insights for identifying the most dominant environmental
drivers of GHG fluxes in coastal salt marshes. Based on the nonlinear correlation coefficients of the log10
domain, the NEECO2,uptake and NEECH4,emission had strong, moderate to strong, and moderate correspon-
dences with the ST, PAR, and SS, respectively (albeit impacted by multicollinearity). PCA and FA resolved mul-
ticollinearity in two reverse but complementary orthogonal transformations. PCA suggested a strong linkage
of the GHG fluxes with both ST and PAR and a moderate linkage with SS. In contrast, FA indicated a strong
linkage of the fluxes with ST and a weak to moderate linkage with SS and PAR. However, both PCA and FA
provided indirect measures of the nonlinear relations between fluxes and the driving variables. The direct
estimations of predictors versus response relations with the orthogonal component-based nonlinear PLSR
modeling suggested ST, PAR, and SS as, respectively, the strong, moderate, and weak drivers of the fluxes.
Further, all four layers of analytics indicated that pH, h, and SM were not important drivers of the GHG fluxes
in these coastal salt marshes.

Based on the above synthesis, PAR, ST, and SS were primarily chosen as the dominant predictors for both
NEECO2,uptake and NEECH4,emission models. Subject to the availability of additional data for fluxes and the
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reduced set of drivers, the predictive models were then estimated with
extended data sets for May to October 2013 (Table S3; details in section
2.2). The estimated parameters of all three predictors in the NEECO2,uptake
model were statistically significant (N = 137, p value < 0.001). However,
the parameter of PAR was not statistically significant (p value = 0.54) for
the NEECH4,emission model. Therefore, the final model of NEECH4,emission

included only ST and SS as the significant, dominant predictors (N = 107,
p value < 0.05). Furthermore, based on available data and the existing lit-
erature (Lloyd & Taylor, 1994; Mahecha et al., 2010; Tong et al., 2014; Xie
et al., 2014), the nighttime net CO2 respiration (NEECO2,emission) was mod-
eled as a power law function of ST (N = 22, p value < 0.001).

The final models of the GHG fluxes—as robustly estimated with a boot-
strap Monte-Carlo process using 10,000 iterations—showed a very good
agreement with observed fluxes of the four salt marshes. The mean
fitting efficiency (NSE) and prediction accuracy (RSR) of the NEECO2,uptake
model over 10,000 estimations (calibrations) were 0.91 and 0.31, respec-
tively; the model performed equally well for 10,000 validations (mean
NSE = 0.90, mean RSR = 0.30). The NEECO2,emission model provided similar
predictions in calibrations and validations (mean NSE = 0.87–0.89, mean
RSR = 0.30–0.36). The NEECH4,emission model also showed good perfor-
mance over the 10000 calibrations (mean NSE = 0.83, mean RSR = 0.42)
and validations (mean NSE = 0.80, mean RSR = 0.49). Ensemble means of
the individual parameters were used to represent the final, emergent
power law scaling models of the GHG fluxes as follows:

NEECO2;uptake ¼ �10�3:99PAR0:66ST3:28SS�1:07 (5)

NEECO2;emission ¼ 10�1:43ST1:49 (6)

NEECH4;emission ¼ 10�2:61ST3:45SS�1:35 (7)

where NEECO2,uptake, NEECO2,emission, and PAR represent the original (i.e., untransformed) data in
μmol ·m�2 · s�1; NEECH4,emission is in nmol ·m�2 · s�1; ST is in °C; and SS is in parts per thousand (ppt). The
negative sign in equation (5) indicates the daytime net uptake fluxes of CO2.

The observed GHG fluxes were plotted against the predicted fluxes to further demonstrate the performance
and spatial robustness of the models across the four salt marshes (Figure 4). The model parameters were
approximately normally distributed, as demonstrated by the sampling distribution of 10,000 estimations.
Standard deviation (SD) of the NEECO2,uptake model parameters representing the scale factor (�3.99), PAR
(0.66), ST (3.28), and SS (�1.07) were, respectively, 0.52, 0.10, 0.19, and 0.22. The SD of the NEECO2,emission

model parameters representing the scale factor (�1.43) and ST (1.49) were, respectively, 0.18 and 0.15. The
SD of the NEECH4,emission model parameters associated with the scale factor (�2.61), ST (3.45), and SS
(�1.35) were 0.79, 0.24, and 0.46, respectively. The small SDs relative to the respective means (coefficient
of variation = 6–34%) indicated stability and low uncertainty of the estimated model parameters.

The developed models (equations (5)–(7)) were represented in a user-friendly, macro-based Excel spread-
sheet model named “Coastal Wetland GHG Model” (CWGM) (see CWGM, 2018 to download the Excel
model). We expressed the difference between net carbon (CO2) uptake and net carbon (CO2 and CH4)
emissions in the Excel model by a new term, net atmospheric carbon removal (NACR). The net ecosystem
carbon balance of a wetland can be obtained by subtracting the net lateral flux from NACR. However, the
net lateral fluxes between the salt marsh and the bay were not modeled in this study. A user can estimate
the NACR by upscaling the predicted instantaneous fluxes of CO2 and CH4 over the growing period (or any
user-defined period) in units of gram carbon (C) per square meter of marsh area (gC/m2). The Excel-based
model may aid the coastal stakeholders (e.g., reserve managers, restoration practitioners, and

Table 4
Coefficients (β) of the Log10-Transformed, Standardized (Z-Score) PLSR Models
for NEECO2,uptake and NEECH4,emission for Four Salt Marshes in Waquoit Bay
and Adjacent Estuaries, MA

Predictors

NEECO2,uptake NEECH4,emission

β βST/βVariable β βST/βVariable

PAR 0.39 1.7 0.31 1.9
ST 0.65 1.0 0.60 1.0
SS �0.16 4.1 �0.12 5.0
pH �0.03 21.7 �0.05 12.0
h �0.04 16.3 �0.08 7.5
SM �0.02 32.5 �0.04 15.0

PLSR statistics
PLS components 3 2
NSE 0.94 0.73
RSR 0.25 0.51

Aggregated linkages
βC 0.76 0.68
βB 0.16 0.13
βH 0.04 0.09
βC/βB 4.8 5.2
βC/βH 19.0 7.6

Note. NEECO2,uptake, NEECH4,emission, PAR, ST, SS, pH, h, and SM refer to
the daytime net uptake fluxes of CO2, net emission fluxes of CH4, photo-
synthetically active radiation, soil temperature, porewater salinity, pH, well
water level, and soil moisture content, respectively. The aggregated lin-
kages of the “climatic” (βC), “biogeochemical” (βB), and “hydrologic” (βH)
process components were computed, respectively, from equations (1),
(2), and (3). βST/βVariable represents the ratio between the coefficient of
ST and the coefficients of other variables in the partial least squares
regression (PLSR) model. NSE = Nash-Sutcliffe Efficiency; PLS = partial least
squares; RSR = ratio of root-mean-square error to the standard deviations
of the observations.
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policymakers) in tidal wetland monitoring and restorations, economic
evaluations of blue carbon, and developing GHG offset protocols (see
Text S2 in the supporting information for further details).

4. Discussion
4.1. GHG Fluxes Across the N Gradient Among the Salt Marshes

The net uptake fluxes of CO2 and emission fluxes of CH4 did not signifi-
cantly vary across the N gradient (5–126 kg · ha�1 · year�1) among the four
salt marshes at Cape Cod, MA (Table S4); this is in contrast with previous
studies on coastal salt marshes. For example, Morris et al. (2013) reported
a significant increase in net primary production of S. alterniflora and
S. patens in response to N fertilization of salt marshes at the rates of
1,050–2,100 kg · N · ha�1 · year�1 for 13 years at Plum Island, MA, and for
30 years at North Inlet, South Carolina. Vivanco et al. (2015) found
significant increases in both net CO2 uptake and CH4 emission fluxes in
three salt marshes (dominated by Salicornia virginica) across the
California coasts of United States by gradually applying fertilization loads
of 100–3,200 kg · N · ha�1 · year�1 over a 7–14 month period. However,
Vivanco et al. (2015) reported no significant effect on CO2 respiration by
the N fertilization in the Californian marshes. We posit that the N loadings
in the four marshes at Cape Cod were not high enough to result in a posi-
tive response of GHG fluxes despite the notable N gradient among them.

4.2. Environmental Controls of the Daytime Net Uptake Fluxes of CO2

The S. alterniflora dominated salt marshes at Cape Cod displayed high
productivity with daytime net uptake fluxes of CO2 (NEECO2,uptake) in
this study (mean = �7.17 μmol ·m�2 · s�1, SD = 5.03 μmol ·m�2 · s�1;
Table 1). S. alterniflora (a C4 plant) has a high photosynthesis rate (minimal
photorespiration), compared to C3 plants (e.g., Phragmites australis;
Mantlana et al., 2008). S. alterniflora also has a well-developed aerenchyma
to adapt to the hypoxic conditions of coastal wetlands (Maricle & Lee,

2007). However, fixation of CO2 by salt marsh plants depends on the availability of sunlight (PAR), which
had a moderate to high control on the net uptake fluxes of CO2. In a companion study, Moseman-Valtierra
et al. (2016) examined the variation in gas fluxes across vegetation types within the differing regions of
Sage Lot Pond—reporting moderate to high linkages of CO2 fluxes with the aboveground biomass, below-
ground biomass, plant height, and stem density. However, the linkage of gas fluxes with biomass or other
plant variables was not tested in the present study.

The strong positive control of ST on NEECO2,uptake can mainly be attributed to the accelerated photosynthesis
in coastal wetlands in response to high temperature (Guo et al., 2009; Inglett et al., 2012). Ambient tempera-
ture controls the activity of the primary C4 photosynthetic enzyme, RuBisCO. The turnover rate of RuBisCO
increases with elevated temperature during the daylight hours, resulting in higher CO2 uptake (Sage &
Kubien, 2007). However, the CO2 uptake falls at low temperatures as CO2 leaks out from the bundle sheath
cells (Kubien et al., 2003). Previous studies reported a coupled increase in photosynthesis and aboveground
biomass of Spartina with experimental warming during the growing season (Charles & Dukes, 2009;
Couto et al., 2014; Idaszkin & Bortolus, 2011). However, photosynthesis of C4 plants can also decline or shut
down at extremely high temperature (Sage, 2002; Sage & Kubien, 2007), which was not encountered during
our sampling at Cape Cod in May–October 2013 (ST < 30 °C; Tables 1 and S3). Further, since NEE incorpo-
rates both gross primary productivity and respiration during daytime, the estimated linkage of ST and
NEECO2,uptake may be different from that between ST and gross primary productivity.

Our study found a significant negative impact of soil salinity on NEECO2,uptake in the Spartina dominated salt
marshes. Although salt marsh plants are tolerant of salinity stress, marsh productivity can be adversely
affected with increasing salinity (Lewis & Weber, 2002; Wang et al., 2006). Ewing et al. (1995) found
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substantial decreases in the aboveground biomass of Spartina with salinity treatments of 14, 21, and 28 ppt
over 7 to 42 days. Vasquez et al. (2006) reported a decreasing trend in both aboveground and belowground
biomass of Spartinawith increasing salinity from 0.57 to 34 ppt over a period of 3 months. High salinity affects
the leaf chlorophyll content, protein synthesis, and lipid metabolism of marsh plants—resulting in overall
decreased productivity (Mateos-Naranjo et al., 2010; Parida & Das, 2005; Pierfelice et al., 2015). The salinity
impacts could be linked to the accumulation of phytotoxic substances (e.g., hydrogen sulfide, H2S) in anae-
robic wetland sediments (Bradley & Morris, 1990), with both salinity and phytotoxin concentrations increas-
ing when intensity of tidal flushing is relatively low. H2S is produced through a metabolic process in anoxic,
waterlogged conditions under the influence of sulfate-reducing bacteria (e.g., Desulfovibrio)—with higher
salinity indicating a greater supply of sulfate substrate (Lamers et al., 2013). Soil salinity and sulfide can also
affect root respiration, oxygen consumption, and stomatal resistance to gas diffusion (Brown et al., 2006;
Howes et al., 1986; Mendelssohn & McKee, 1988).

Porewater pH of the marsh soil was mostly at or near neutral (pH ≈ 7, Table 1), and exhibited no notable con-
trol on NEECO2,uptake in the four salt marshes. NEECO2,uptake was significantly higher during the high tides than
the low tides in the Cape Cod salt marshes (Table S5, Figure S3). This is in agreement with other salt marsh
studies (Morris, 2000; Wilson & Morris, 2012), which reported a stronger tidal flushing of accumulated salt
from the marsh soil and a higher primary productivity during high tides. However, we did not find a direct
predictive control of the observed modest range of well water level or soil moisture on NEECO2,uptake in this
analysis. The wetland soil often remained at or near complete saturation due to frequent inundation of these
low marshes at Cape Cod with a semidiurnal tidal regime. Since tidal hydrology can strongly regulate the
variation of ST and porewater salinity (Wang et al., 2007), it appears that the effect of hydrology on net
CO2 uptake fluxes was indirectly manifested through ST and salinity. However, it is also possible that our
measured well water levels did not accurately represent the tidal fluctuations in the marsh sites due to the
predominant soil saturation and an inherent time-lag between the well and tidal water levels.

4.3. Environmental Controls of the Net Emission Fluxes of CH4

The tidal salt marshes of Cape Cod exhibited low CH4 emissions (mean NEECH4,emission = 1.15 nmol ·m�2 · s�1,
SD = 0.72 nmol ·m�2 · s�1; Table 1). Data analytics indicated ST as the most dominant driver of daytime CH4

emission (NEECH4,emission) from the salt marshes. This is consistent globally for a range of ecosystems, includ-
ing wetlands (Yvon-Durocher et al., 2014), since methanogenesis is substantially driven by temperature
(Dunfield et al., 1993; Martin & Moseman-Valtierra, 2017). Further, S. alterniflora marshes support a composi-
tion of microbial populations (including methanogens), which could contribute to higher CH4 emission dur-
ing warmer conditions (e.g., Burke et al., 2002; Ravit et al., 2003). Microbial activity associated with both CH4

production (methanogenesis) and oxidation (methanotrophy) is typically represented with an exponentially
increasing function (e.g., Arrhenius equation) of ST and available heat energy (Walter & Heimann, 2000).
However, methanogenesis can have a higher sensitivity to temperature than that of methanotrophy (Born
et al., 1990; Dunfield et al., 1993), leading to higher emissions of CH4 at elevated temperature.

The overall low emissions of CH4 from the Cape Cod salt marshes were mainly caused by high salinity.
NEECH4,emission were negatively and nonlinearly related to the porewater salinity—which is consistent with
existing literature on coastal wetlands (e.g., Bartlett et al., 1985, 1987; Poffenbarger et al., 2011). Previous stu-
dies (Chmura et al., 2011; Magenheimer et al., 1996; Nedwell et al., 2004; Vivanco et al., 2015) also reported
low emissions of CH4 (0.4 to 2.6 nmol ·m�2 · s�1) from moderately to highly saline (18–35 ppt) coastal wet-
lands. The tidal salt marsh sediments are rich in sulfate (SO4

2�), which sulfate-reducing bacteria utilize as a
terminal electron acceptor during anaerobic decomposition. Thermodynamically, sulfate reduction yields
more energy than methanogenesis (Segers, 1998). Sulfate-reducing bacteria, therefore, outcompete metha-
nogens, limiting CH4 production in highly saline sulfate-rich marsh soil (Bartlett et al., 1987; Poffenbarger
et al., 2011; Weston et al., 2014). In fact, SO4

2� reduction can sometimes represent most of the total anaerobic
decomposition in salt marsh sediments due to high SO4

2� concentrations and scarcity of other terminal elec-
tron acceptors (Howarth, 1993; Weston et al., 2014). Further, CH4 oxidation by SO4

2� reducers can also reduce
CH4 emission to the atmosphere in highly saline coastal wetlands (Bartlett et al., 1987; Segers, 1998).

The methane emission fluxes at the four salt marshes did not have a notable linkage with soil porewater pH,
which generally represented neutral conditions (Table 1). Subject to the high salinity and near-saturated soil
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moisture conditions, our results did not show a direct predictive control of well water level or soil moisture on
the salt marsh CH4 emissions. However, the CH4 fluxes were significantly higher during the high tides than
that of the low tides (Table S5, Figure S3), indicating the stronger tidal flushing of accumulated salt in marsh
soil during high tides (Morris, 2000; Wilson & Morris, 2012). Recurrent tidal flooding regulates the temporal
variation of porewater salinity (Silvestri & Marani, 2004; Wang et al., 2007), ultimately impacting CH4 produc-
tion and emission in the salt marshes. The findings also suggest that any direct influence of the hydrologic
variables on CH4 fluxes likely diminishes above a certain salinity threshold (e.g., 18 ppt; see Poffenbarger et al.,
2011). The intertwined effects of tide and salinity in salt marshes indicate the potential for substantially lower
emissions of CH4 if tidal flow is restored in coastal wetlands to increase salinity above 18 ppt or a similar
threshold (Kroeger et al., 2017).

All four layers of data analytics indicated a moderate control of PAR on the CH4 fluxes from the salt
marshes (Tables 2–4, Figure 2). However, PAR was not statistically significant in the predictive modeling of
CH4 fluxes (see equation (7)). Therefore, the apparent influence of PAR on the CH4 fluxes might have mostly
reflected the temperature control on methanogenesis—which was demonstrated by the loadings of PAR, ST,
and NEECH4,emission on factor 1 (Table 3). Further, the weak biotic controls on the CH4 fluxes of salt marshes
could be attributed to high salinity, which might have substantially limited the effect of photosynthate
and available labile carbon for methanogenesis. This finding is corroborated by our companion study that
reported no notable linkages of CH4 fluxes with plant variables such as aboveground biomass, belowground
biomass, plant height, and stem density in the Sage Lot Pond (Moseman-Valtierra et al., 2016).

4.4. Control and Prediction of the Nighttime Net Respiration Fluxes of CO2

The salt marshes in Cape Cod had notable nighttime net respiration fluxes (mean = 2.46 μmol ·m�2 · s�1,
SD = 1.13 μmol ·m�2 · s�1; Table S3), which are in agreement with other salt marshes located in the
Atlantic and Pacific Coasts of United States (Livesley & Andrusiak, 2012; Vivanco et al., 2015; Wigand et al.,
2009). ST is considered the most important regulating factor of nighttime CO2 respiration (autotrophic and
heterotrophic) for various ecosystems (Davidson et al., 2012; Sierra, 2012; Tong et al., 2014; Xie et al., 2014).
The temperature control on respiration is mainly characterized by accelerated microbial and enzyme activity
in the substrate pool in response to increasing temperature (Pendall et al., 2004; Ryan & Law, 2005). We
developed a power law-based model for the nighttime net respiration fluxes of CO2 (i.e., NEECO2,emission) as
a function of ST (equation (6)). The model suggested an important scaling relationship (expressed by using
the “proportionality” sign) between respiration fluxes and ST with an approximate exponent of 3/2 (i.e.,
1.5) as follows:

NEECO2;emission ∝ ST3=2 (8)

The emergent power law scaling model (equation (6)) can be considered an alternative for the classical
Arrhenius-type exponential model (e.g., NEECO2, emission = αeβ � ST) of soil respiration (Lloyd & Taylor, 1994).
To compare the two models, we estimated the exponential model with the growing season NEECO2,emission

and ST data (Table S3 in the supporting information) through a bootstrap Monte-Carlo procedure (10,000
iterations in both calibrations and validations; mean NSE = 0.80–0.85 and mean RSR = 0.39–0.43). The mean
estimated values of α and β were 0.561 and 0.087, respectively; the parameters resulted in a mean tempera-
ture sensitivity (Q10) value of 2.39 (calculated from Q10 = e10β; see Lloyd & Taylor, 1994). The computed Q10

represented the reported range of 1.2–5.1 for Spartina sp. dominated wetlands across different seasons
(Giurgevich & Dunn, 1979; Kirwan & Blum, 2011; Tong et al., 2014), as well as that for other tidal wetlands
(dominated by C. lasiocarpa and D. angustifolia) and bogs (Hirota et al., 2006; Lafleur et al., 2005; Song et al.,
2009). Further, conducting a synthesis of observed data from multiple ecosystems and species types, Lloyd
and Taylor (1994) reported an overall Q10 value of 2.4, which is almost identical to our computed mean.
Based on the mean statistics of our 10,000 estimations, the power law scaling model (NSE = 0.87–0.89 and
RSR = 0.30–0.36) performed slightly better than the exponential model in predicting NEECO2,emission for the
nighttime temperature range of 10–25 °C in the four salt marshes of Cape Cod, MA.

4.5. Model Transferability and Scaling Across Salinity Regimes and Plant Communities

Although the emergent scaling-based power lawmodels were developed using data that mostly represented
polyhaline salt marshes (Table S3), the models may be used to scale the GHG fluxes from a range of coastal
wetlands, representing different vegetation, tide, and salinity regimes (e.g., oligohaline, mesohaline, and
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polyhaline). As an example, the scaling hypothesis was further investigated by comparing our model-
predicted fluxes of CH4 emission with observed data reported in literature (e.g., Bartlett et al., 1985, 1987;
Chmura et al., 2011; DeLaune et al., 1983; Emery & Fulweiler, 2014; Hirota et al., 2007; Holm et al., 2016;
Kelley et al., 1995; Magenheimer et al., 1996; Marsh et al., 2005; Megonigal & Schlesinger, 2002; Nedwell
et al., 2004; Neubauer et al., 2000; Poffenbarger et al., 2011; Tong et al., 2010; Van der Nat & Middleburg,
2000; Vivanco et al., 2015; Wang et al., 2009), incorporating a salinity range of 0.25–40 ppt. The data sets
represented a wide range of dominant wetland plant communities (e.g., Acer rubrum, P. australis, Panisum
hemitomon, and S. alterniflora), soil surface flooding (flooded versus non-flooded), and measurement
methods (light versus dark, as well as light + dark chambers) across the Atlantic, Gulf, and Pacific Coasts of
United States and beyond (Canada, China, and Japan). In this test, CH4 fluxes were predicted using equa-
tion (7) by varying the salinity from 0.25 to 40 ppt for six reference STs (10, 15, 20, 25, 30, and 35 °C).
Further, the predicted fluxes (nmol ·m�2 · s�1) were converted to annual fluxes (gCH4 ·m

�2 · year�1;
1 nmol ·m�2 · s�1 = 0.5046 gCH4 ·m

�2 · year�1) to be consistent with the units of Poffenbarger et al. (2011).
The model reasonably represented the observed CH4 fluxes for polyhaline (>18 ppt), mesohaline (5–
18 ppt), oligohaline (0.5–5 ppt), and freshwater (0.25–0.5 ppt) wetlands, incorporating a geographic gradient
in vegetation and tidal hydrology (Figure 5). The analysis further suggested an emergent scaling relationship
of wetland CH4 emissions with the porewater salinity with an exponent of approximately 4/3 (i.e., ~1.35) for a
range of ST as follows:

NEECH 4;emission ∝ SS�4=3 (9)

The emergent scaling relationships (equations (7) and (9)) indicated an intertwined effect of salinity and
temperature on production and emission of CH4 fluxes in coastal salt marshes. The CH4 fluxes increased

Figure 5. Comparison between modeled (using equation (7)) and literature-reported CH4 emission fluxes across a wide
range of salinity regimes and plant communities along the Atlantic, Gulf, and Pacific Coasts of United States and
beyond (Canada, China, and Japan). NEECH4,emission = net emission fluxes of CH4; ST = soil temperature.
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nonlinearly with lower salinity toward the oligohaline and freshwater marshes, and the emissions at the same
salinity were notably higher at higher temperatures (Figure 5). The similarity between predictions and
observations of CH4 emission, as well as that between predictions from the power law and classical
Arrhenius models of net CO2 respiration, provided important evidence of potential model extrapolations
and scaling across a large range of salinity regimes and plant communities.

4.6. Implications of Climate Change, Sea Level Rise, and Caveats

We explored the potential scenarios of GHG fluxes for our study area under a changing climate and rising sea
level. For example, the Intergovernmental Panel on Climate Change (IPCC) RCP4.5 and 8.5 represent moder-
ate and very high emission scenarios, respectively (IPCC, 2014). Based on observations (Table 1), the baseline
2013 values for PAR, ST, and SS were considered to be 1,468.8 μmol ·m�2 · s�1, 20 °C, and 29 ppt, respectively.
Ensemble averages of the downscaled scenarios from 20 general circulation models (GCMs; Table S6 in the
supporting information; Abatzoglou & Brown, 2012; United States Geological Survey [USGS], 2017) for
Waquoit Bay and adjacent estuaries suggested an increase of PAR by approximately 2% in 2050 and 3%
in 2080, relative to the 2013 values (Table 5). The projected increase in temperature was approximately
1–1.5 °C by 2050 and 2–3 °C by 2080. Based on the IPCC scenarios for sea level rise (SLR), salinity was antici-
pated to increase from the 2013 baseline by 10% in 2050 and 21% in 2080. This assumption of increasing
salinity with SLR in estuarine ecosystems is supported by previous studies (Cloern et al., 2011; Hilton et al.,
2008; Morris, 1995; Schile et al., 2017). Although sediment accretion and increased belowground biomass
may significantly compensate the rising level (Cherry et al., 2009; Morris et al., 2002; Schile et al., 2014), tidal
wetlands are expected to experience a net loss in relative elevation (Schile et al., 2017). Overall, SLR could
increase the extent, frequency, and duration of tidal flooding, leading to a higher salinity in the coastal
salt marshes.

Assuming persistence of the salt marshes and plant species under a warming climate and SLR in the future,
we calculated the anticipated changes in GHG fluxes for the salt marshes by using the 2013 baseline and the
downscaled scenarios of PAR, ST, and SS for 2050 and 2080 as inputs to the predictive models (equations (5)–
(7)). The inputs led to the baseline (2013) fluxes of �6.35 μmol ·m�2 · s�1 for daytime CO2 uptake,
3.23 μmol ·m�2 · s�1 for nighttime CO2 respiration, and 0.83 nmol ·m�2 · s�1 for CH4 emission (Table 5).
The 2013 baseline NACR over the growing season (May–October) was estimated to be �290.63 and
�282.44 gC/m2 by using, respectively, 34 and 86 as the global warming potential of CH4 (Myhre et al.,
2013). Based on the downscaled scenarios of 20 GCMs (RCP 4.5 and 8.5) and projected SLR, the ensemble

Table 5
The Projected Increases in Environmental Drivers and the Greenhouse Gas Fluxes by 2050 and 2080 Based on the Ensemble
Averages of 20 Downscaled General Circulation Models for the Waquoit Bay and Adjacent Estuaries Under the
Intergovernmental Panel on Climate Change Scenarios of RCP 4.5 and 8.5

Model variables Baseline year 2013

Projected increase

RCP 4.5
2050

RCP 8.5
2050

RCP 4.5
2080

RCP 8.5
2080

PAR 1,468.8 μmol·m�2·s�1 2.2% 2.2% 2.7% 2.5%
ST 20 °C 1.2 °C 1.6 °C 1.9 °C 3.1 °C
SS 29 ppt 10.0% 10.0% 21.0% 21.0%
NEECO2,uptake �6.35 μmol·m�2·s�1 10.5% 18.9% 14.4% 33.9%
NEECO2,emission 3.23 μmol·m�2·s�1 8.7% 12.4% 14.6% 23.8%
NEECH4,emission 0.83 nmol·m�2·s�1 8.0% 16.4% 10.0% 30.0%
NACR (GWP = 34) �290.63 gC.m�2 12.6% 25.8% 14.4% 44.9%
NACR (GWP = 86) �282.44 gC.m�2 9.6% 22.5% 11.4% 41.2%

Note. NEECO2,uptake, NEECO2,emission, NEECH4,emission, NACR, PAR, ST, and SS refer to the daytime net uptake fluxes of
CO2, net emission fluxes of CO2, net emission fluxes of CH4, net atmospheric carbon removal, photosynthetically active
radiation, soil temperature, and porewater salinity, respectively; ppt refers to parts per thousand. GWP refers to CO2
equivalent global warming potential for CH4. The baseline and projected NEECO2,uptake, NEECO2,emission, and
NEECH4,emission were computed by using equations (5)–(7), respectively. Negative indicates the net uptake fluxes of
CO2. NACR is the difference between net carbon (CO2) uptake and net carbon (CO2 and CH4) emissions in the salt
marshes. NACRwas calculated by upscaling the greenhouse gas fluxes over the growing season (May–October; 183 days)
in units of gram carbon (C) per square meter marsh area. RCP = Representative Concentration Pathway.
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average of the daytime net uptake fluxes of CO2 would increase from their 2013 baseline estimations by
approximately 11–19% in 2050 and 14–34% in 2080 (Table 5). In contrast, the nighttime net respiration fluxes
of CO2 would increase by approximately 9–12% in 2050 and 15–24% in 2080. Further, the ensemble average
of CH4 emissions would increase by approximately 8–16% in 2050 and 10–30% in 2080. The multimodel
ensemble average of NACR was projected to increase by approximately 10–26% in 2050 and 11–45% in
2080 among the two RCP scenarios and global warming potentials. Overall, the differences in the baseline
fluxes of net CO2 uptake and respiration, as well as their projected increases, indicated the potential for salt
marshes in Waquoit Bay and adjacent areas to accelerate the removal of atmospheric CO2 under a warming
climate and rising sea level. However, the assumption of persistent salt marshes and plant species under the
future climate and sea level should be considered as a caveat for this analysis. The projected estimations can
further be impacted if temperature and salinity exceed plants’ tolerable thresholds of physiological and envir-
onmental stresses under extreme climate. We recommend further investigations with larger observational
data sets to determine whether the salt marshes would indeed continue to stock carbon at the current or
at a higher rate in the future.

The successful predictions of the GHG fluxes across the four sites (Figure 4) with a single set of parameters
suggested spatial robustness of the emergent power law scaling models (equations (5)–(7)) in Waquoit Bay
and adjacent region. However, the models should be tested with new data from additional salt marshes along
a larger gradient of nitrogen, salinity, and tidal flooding to expand application to the regional scale (e.g.,
New England) and beyond. Specifically, model applications at wetlands with much higher N loading rates than
our study sites should be considered with caveats. The current models were developed by using the measured
data for the extended growing season (May–October) of 2013. The interannual variability of GHG fluxes and the
environmental predictors had not been incorporated into the current models. The net lateral fluxes of carbon
between the tidal marshes and the bay were not modeled in this study due to the lack of relevant observational
data. However, measurements and modeling of net lateral fluxes are challenging and highly uncertain (Wang
et al., 2016), meriting a separate investigation. Subject to the availability of data, future research can further indi-
cate whether porewater salinity should be considered as a predictor (in addition to ST) for the nighttime CO2

respiration model. The next-generation models could also account for variation in plant factors (i.e., biomass
and leaf area) to predict the GHG fluxes at longer time scales (e.g., monthly and annual).

In general, mathematical modeling is an abstraction of reality, and many complex processes are simplified in
the abstraction methods. Depending on the data quality and quantity, a conventional statistical analysis and
empirical modeling may lead to results that lack ecological underpinning and contradict mechanistic under-
standing. In our study, the filtering methods ensured a good quality and adequacy of the data sets by exclud-
ing only 12–25% of the corresponding primary data (section 2.2). We also employed a four-layer data
analytics approach (correlation matrix, PCA, FA, and PLSR) and synthesized their overall outcomes so that
the limitations and artifacts from any particular methods would not misguide the overall pursuit of determin-
ing the environmental controls of salt marsh GHG fluxes. Further, the identified major controls of the GHG
fluxes, as well as their nonlinear scaling relationships with PAR, ST, and SS were mechanistically explained
based on existing literature (sections 4.2–4.5). The “emergent scaling” hypothesis of this study has, therefore,
a potentially far-reaching ecological and biogeochemical significance, specifically pertaining to the develop-
ment of generalized (scale-invariant) predictive models of GHG fluxes in a wide range of coastal wetlands.

Given the lack of observations and predictive tools, the presented emergent power law-based scalingmodels
can be considered a step forward toward developing relatively simple, mechanistically meaningful, and par-
simonious models to predict the major GHG fluxes and NACR in coastal salt marshes. Further, in the absence
or scarcity of observed GHG fluxes (which is often the case for tidal marshes), the empirical models can be
used to estimate data that can guide the calibration and validation of complex process models
(Abramowitz et al., 2007; Beer et al., 2010; Keenan et al., 2012). The empirical models, therefore, can also
be used as diagnostic tools and data benchmarks to develop low-dimensional, reliable process models
(Stoy et al., 2005) to mechanistically predict GHG fluxes and carbon storage in coastal salt marshes.

5. Conclusions

We determined the relative environmental controls and emergent scaling of CO2 and CH4 fluxes in coastal
salt marshes by conducting data analytics and empirical modeling. Our measurements from four salt
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marshes in Waquoit Bay and adjacent estuaries at Cape Cod, MA exhibited high net CO2 uptake and low CH4

emissions during May–October 2013. However, the GHG fluxes did not significantly vary with the nitrogen
loading gradient (5–126 kg · ha�1 · year�1) across the salt marshes (p value = 0.41–0.71). Soil temperature
(ST) was the strongest driver of both fluxes, having approximately 2 and 4–5 times stronger influence than
that of PAR and porewater salinity, respectively. Porewater pH was at or near neutral, exhibiting no notable
control on the GHG fluxes. Further, hydrologic variables such as well water level and soil moisture did not
have a direct predictive control on the GHG fluxes, although both fluxes were significantly higher during
the high tides than the low tides (p value < 0.001). However, soil moisture was high and mostly remained
at or near saturation due to semidiurnal tidal flooding, which might have indirectly influenced the GHG fluxes
by contributing to the temporal variation of salinity and ST. On average, the aggregated “climatic” process
component (PAR and ST) exhibited approximately 5 and 13 times stronger controls on the GHG fluxes than
that of the “biogeochemical” (pH and salinity) and “hydrologic” (water level and soil moisture) components in
these salt marshes at Cape Cod.

The findings on dominant controls were leveraged to investigate the emergent scaling of salt marsh CO2 and
CH4 fluxes and develop power law-based scaling models to accurately predict the GHG fluxes based on a
small set of statistically significant environmental drivers (NSE = 0.80–0.91; RSR = 0.30–0.49). The daytime
net CO2 uptake fluxes were predicted from PAR, ST, and porewater salinity, whereas only ST and salinity
appeared significant to predict the day or nighttime CH4 emission fluxes. However, the nighttime net respira-
tion fluxes of CO2 were predicted as a power law scaling function of ST, which performed slightly better than
the classical Arrhenius-type exponential model of soil respiration (Lloyd & Taylor, 1994). Further, comparison
of the predicted CH4 fluxes with observations from literature (e.g., Chmura et al., 2011; Emery & Fulweiler,
2014; Holm et al., 2016; Poffenbarger et al., 2011; Vivanco et al., 2015) provided promising evidences of poten-
tial scaling and model extrapolations across a wide range of salinity regimes and plant communities along
the Atlantic, Gulf, and Pacific Coasts of United States and beyond (Canada, China, and Japan). Subject to
the availability of new observations for fluxes and the environmental drivers, model scaling and generaliza-
tion should further be tested across large biological, ecological, biogeochemical, hydroclimatic, and geogra-
phical gradients in future research.

The emergent scaling based predictive models were represented in a user-friendly Excel spreadsheet for a
broader community of scientists and end users. The models and Excel software serve as ecological engineer-
ing tools to explore scenarios of salt marsh GHG fluxes and NACR inWaquoit Bay and adjacent region under a
changing climate (PAR and temperature) and rising sea level (increased tidal flooding and porewater salinity).
For example, using the downscaled climatic projections (PAR and temperature) from 20 GCMs and antici-
pated sea level (salinity) as inputs into the models, the salt marshes of Cape Cod were projected to remove
a higher (than current) rate of atmospheric carbon in 2050 and 2080. Analysis of such scenarios may help the
coastal stakeholders (e.g., reserve managers, restoration practitioners, and policymakers) to formulate guide-
lines for restoration, monitoring, and maintenance of the tidal salt marshes under a changing climate
and environment.
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